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ON THE DESIGN AND COMPARISON OF CiRTAIN
DICHOTCMOUS ZXPERIMENTS

By
Bussell N. Bradt

1. Introduction apd Summary.
It may frequently happen that a researcher, wishing to decide which
one of s set of alternatives to nccept, finds that there are several

experimenis available Lo him which he might perform %o guide him in

reaching his decision. Thus, he is faced with making a preliminary decision

as to which experiment or experiments he is to perform. If he admits the
possibility of performing more than one experiment, then the questions
of how many, which ones; and in what order, arise. It iz such questions
that come vnder the heading of comparison and design of experiments.

In its most general formulaiion, a sample space, }, is an ordered
quadruple, (%,8,Q,P), skers Z is an arbitrary set, © is a Borel field
of subsets of Z, () is an arbitrary set, and P is a functiorn defined
on gxn with the property that for each e.oe.ﬂ, P ., the reatristion
of P to ex {w), is a probability measure on Q. In this setting an
experiment is a sub-Borel field of 6 . I e is a Borel field of subsets

of a get Wand T 18 a 6-5 maasurabie function from Z to W, then T is a

random variable ‘and

€y = {3925: for some Ec( , B = {z: r(z)ax}}
is a sub-Borel field of §. € 1s called the experiment amsociated
with the random var:lablp T. Keeping in mind that many random variables

may be associated with the same experiment, and therefore to view an
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experiment as a sub-Borel field is thus more basic approach, no confusion
will result in this paper from identifying random variable with experiment.

Since the random variables dealt with in this paper are all real
valued, to say that an experiment is available tc tke ressarcher is to say
that there is a real random variable which he can observe and whese distri-
bution is kmown for each coe(2.

While much of the gemeral theory of th. lesign problem has been

developed, e.g., by Wald [1] and Magwire [2], actual solutions of particular

problems, especially of the sequential type, have not bsen obtained. This
paper stems from work towards solving the design problem for particular
cases. Attention is restricisd to dichotomous experiments; i.e., ) is
assumed to contain but two elements which will be called hypothesa: and
denotved by Hl and H,. It is supposed that one is required to decide which
hypothesis is true and that a lo8ss of one unit is suffered if the false
hypothesis is chosen while no loas occurs i the truwe one is chosen.
Further, % will denote the g priori probability that ) is true and the
criterion te be used in comparing experiments will he the Bayes risks
associated with the various experiments.

In Secticn 2 it is supposed that there are two experiments, i.e.,
random variables, X and Y available and that but one experiment is allowed.
Some conditions for uniform irequalities between the Bayes risk associated
with X and that associated with Y are obtained. Certair relations between
the Kullbach-Leibler information numbers for X and for Y and their Bayes

risks are shown. In particular, it is found that a necessary eondition

that one random variable have a Bayes risk uniformly less or equal that of




the other is that its Kulibach-Leibler information numbers ars greater or
equal those for the other. The case in which the distributiors ere normcl

1s discussed in some detail and a few remarks are addressed to the matter

of viewing the Kullbach-Leibler information numbers, in certain special cases,

ae functions of that transformaiicn, t, such that the distrivuticn o

+y

£(X)
under H; is the distribution of X under H,.

Section 3 is devated to the problem of designs in the case of binomial
distributions. It ie supposed that the two experiments available, X and ¥,
are independent and of equal cost, and that it is given that a total of
n experiments is to be performed. Two problems are discussed: What is
the best division of the n experiments between X's and Y's if one is to
decide this matter before experimentation? What is the best sequential
design, i.e., the bast rule prescribing, as a function of the results of
the preceding experiments, which rardom variabla to obmerve in the next
experiment.

In Section 4, instead of considering the performance of a fixed
nunmber of experiments, the experimentation is supposed terminated by a
particular sequential stoppimg rule and omne is interested im discovaring
sequential designs which minimize the expected number of experiments that
will be performed.

In the final section, 5, a somewhat different purpose of experimen-
tation is introduced. A4Again, X and Y are two real random variables with
known distributions undsr the wwo hypotheses. A total of n experiments is
allowed and a sequential design, telling which random variable to observe

at each step, which will meximize the sum of the n observations is sought.
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The design Xo which requires, a% each step that pley which maximizes the
expected value of the next observation is considered in particular. For
the ocsse in which X and Y have binomial distributions such that X under El
and Y under H, have the same distributions and X under &, and Y under B’l
have the same disiributions, the protlem is kanown as the 'Two-armed
Bandit'. Brief ocutlines of t¥o methods of attack on the question of

the optimal design for ths Two-armed Bandit are given. It is a conjeciure
of Blackwell's that Jo is the optimal design. By both methods this

oonjJecture was found to hold true for small values of n. Each, howevsr,

appears to be too cumbersome in the general case to provide a full

proof.
2. Some Relations Between Bayes Risks and the Kullbach-Leibler
Information Numbers.

2.1 Genera) Results. Of the two hypotheses, Id.l and H,, let B’l be
true with g priori probability % and Hg be true with a pricri probability
1- . Suppose that it is required to decide which of the hypotheses is
true, suffering a losa of one if the falss hypothesis is chosen and no
loass otherwise. Further, suppo3ae that I and Y are real random variables
having distribution functicus Fi and Gi’ reapectively, under hypotheaia
Hi and with the corresponding densities 1’1 and gy with respsct to a
ccmmon measure, Y, such that £,>0 if and only if g,>0. A4n cbservation
e‘it-her of X or of Y is allowed to assist in making the decision as to the
true hypothesis.

0f course, if but one obLservation were allowed and one wers interested

only in comparing X and Y for one particular value of 7, the preliminkry



decision as to whether to observe X or ¥, i.e., the design problem, reduces
4o compuding the ..:e.;'e.e risk against 7 when using X, R,(% ), and that when
Y is used, P.I(Z,), and using the random variable corresponding to the
smaller risk. Since one is not interested in such a strongly restricted
comparison, this criterion will not yleld a simple solntion, uniess
Ry(%)2By(¢) for all G, or Bp(¥%)2By(%) for a1l 3, (05§ 51), 4n
which cease the choice bstreen I and Y /8 clear. PFurthermore, any
criterion for choosing between X and Y should agree with this whenever

one risk curve lies uniformly on or below the other.

Considering the statistical games based on X and cn Y as S-games
([37), with 8; and Sy the respective setsz of risk vectors, the condition
that RI(C)sB!(Z',) for all I, is equivalent to Sy =Sy, i.e., any risk
vector attainable u=ing Y can also be attained bty using X. Interest in
conditions undsr which S;= Sy is further increased in view of results
of Flackwell's [4] that if such is the case, then regardless of the
number of actions open to ths rsssarcher or the loss function nsed, the
set of risk voctors attainable with X contains that attainable with Y.

Let Ry< Ry denote that B (% )531(‘(_’() for all ¥ . Throughout the
paper it will be found very convenient to consider 'i:%‘ and this will
regularly bs denoted by ‘7

Lemmg 2.1. Two conditions, each necesaary and aufficient, that
<
BI(Z,) :}B‘I((f) are:
@®

<1 ®
(1) lmin(n—vz,o)dﬂ(u){ -}J min(u- » ,0)dF(u) ;
> J% )

[ve ) =Y g}
(11) f in(l--g- ,O)dG(u){'j nm(l-{-,o)dn(u) ;
>
o

[}
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shere E and G are the c¢.d.f.'s of £,(x)/f,(x) under H, and H,, respectively,

ond ¥ anid
AL & A2 g

i

ara tha ¢.d.f.'as of g,(x)/g,(x) under H, and H,, respectively.
< 3 al 2
Proof. From the well known theory of Eayes solutions (zee [3],
Chapter 6), the Bayes risk aguinst % using X is given by

(1) Be(g) = I«f : )f £, (x)a¥ (x)+(1- %) f £, (x)d¥(x)
X

£, (x
.. 2
£.x) 7 i-% t.(x) S 1-7

With 7( -T% , this can be written as

| BR(X) S
(2) Err/ail i [ £,(xjd ‘P(x)-7 f £,(x)d YA(x)
?1 x) 57( f1215 |

] .'.(a - uf
With E{a) £ £, (x)d Y(x),

fl(xs su

(%) A it
(3) B{_Z -7 '[ndl(n)-q:[ dE(n)

- I ata(u-7 ,0)a8(n)

With F(u)= / Ifz(x)diiv'(x) s

fz x
(%) X
(4) n:_t( =0 dF(u)- 77]% dF(u)
°

AR e M R
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With the analogous expressions for ths rilsk associated with Y, the
conclusion is jimmediate.
<
Lemma 2.2. (1) By(%) {- }P.I(‘(,) if and only if

dx(ﬂa)du { } l*u)dn ’

whers o(x(z) is the prebebility, under H,, that in following tha Bayes

procedure against ¥, with X, Hz will be chosen.

(11) If G{u)/u—»0 as u—y0, then nx(t.){ }n!(t,) if and only if
f fuien ] - g J RE S

where ,6’1(‘(,) is the probability under E, that in following the Bayes
procedurs againet 7, with ¥, H, =111 be chosen.

Proof. From Equation (3) in the proof of Lemma 2.1,

B-x(&)
(1) =Y .
Integrating (1) by parts yielda
Bx(l’()
(2) 1% - -j E(u)du .
However, E(u)=~ /f (x)aP(x) = 1- o(x(l+ ). Henoce,
’. ( u
AR
( )
(3) Rx z; f (7 (78=)du :

From the similar expression involving R, ; conclusion (1) follows.

S~
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A parallel argumsnt from equation (4) in the proof of Lemma 2.1

vialda eronelnaion (34). , .
7 ari==le’ i A°LlvQ

-mvamem Seaae RV ;

roting that G(z)= B_(=%-)
Theorem 2.1. Two conditions, each necessary and sufficient that
Ry=Ry are:
(1) fz/fl and g,/g, have the same distributions under H,;
(11) tz/tl and gz/g1 have the same distributions under E,.
Proof. The sufficiency is immediate from Lemma 2.1. To show the

necessity, suppose Rx"Ry’ then for all >( 20,

™ ®
(1) f min(u- 7N ,0)dE(u) = r min(u-7 ,0)dF(u) .
J {
() °

Fow, for any a>0, let §_(u)=u min(u-a,0) and let 3 (u)=-n min(u-(a+1)0),
n=1,2,3,... . Then

[e 2] <
@ | 0 g (w)aste) - J (B, (u)+ & ())ar(a) ’
(o]
for all n. Henco,
f f
(3) E(a)+ J (1-n(u-a))dE(u) = F(a)+ J' (1-n(v-a)dF(u)
a<u5a+§ a<usa+%

Letting n —»> o, E(a)=F(a), i.c., the likslihood ratios, rz/rl and gz/gl,

have the same distribvtion under Hy. It foliows immediately that

(g{§ )= ofy(q), since E(u)=1-Xg(7h=). Now Bp(¥)= TOG(T)+(1-7 )‘81(5};

hence, By=Ry and ®y= O, implies By- {By» which is conelusion (1i).
With these conditions that Bxs ?.!-, sttention is turned to the relation

between the condition Rxs R! and the Kullbach-Leibler information numbers.
The mean information per obeervation of X for discriminating between

B, and H, when H, 1s true is defined by Kullbach and Leibler, {57, (6], to
be
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o
" f (X)
(2.1.1) Ix(1:2) = J fl(x)log ?i?;y dW(x) , for i=1,
‘o
and FD . L =)
I (2:) = J £,(x}1og & dY(x) , for i=2.
-0

‘the mean divergence beiween Hl and 82 per observation of X they then
define to be
(2.1.2) Iy = Lp(1:2) ¢ Ip(2:1)

Ix(1=2) and Ix(2:1) will be referred to as the K-L numbers for X. The
¥-L numbers and the divergence for Y are similarly defined.
It is noted in passing that if the distribution of X is of the

2, X
exponential type, i.e., fi(x)== ﬁ(coi)e i , then

e

Blw,)
(2.1.3) Ip(1:2) = log W + (‘*’1"‘)2)3@,“]

-

(,)
Ix(2=1) - log-g-(;b + (wz-wl)Ec%[X] ; and

Iy = (o= ), (XVE, X))

“

Thus, Jx Js an interegting measure of the 'distance’ b

a
€
bl
9
143

relative to the random variable X, being the product of twc often
considered measures.

1 1x(1=2)> 1,(1:2) and I (2:1)> 11(2:1), one would say that, in
the Kullbach-Leibler serse, X iz the more informative. The question that
arisas 1s that of the relation between being more informative in the
Kullbach-Leibler sense and being more informative in the sense of uniformly

smaller Bayes risks. It will bec ceen in the remainder of this ssctiom

that the two are not equivalent, but that interesting relations do exisat.

m——c—
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Theoren Z.2. Rx-B! implies equality of the corrssponding XK-L numbers
for X and for I.

Proof. With E and F as defined in Lemma 2.1,
®

2 £, (x)
(1) 11(1:2) = f fl(x) log Ez-&)- d Y(x) = -f log uwdE(u) , and

- 0 o]
I,(1:2) f()l Eaéf.;.dq;() rl ud®{u)
s - x) log x) =~ og 145 .
Y _:2 g, (x g
By Theorem 2.1, E=F and hence Ip(1:2) = 1!(1:2).

In the same way,
®

£,(x)
@ 1) - [ 400 108 gy 4wl -

®
u log udB(u) , and

o
IY(Z:I) -

gy(x) .
g,(x) log m aY(x) = [ u log udf(u)

I
]

@
(> ]
<

Herce, Iy(2:1)=1Iy(2:1) also.

Theorem 2.3. If ‘Bxs E!, then the E-L numbers for X are greater
or aqual to the corresponding EK-L numbers for Y.

Proof. 4gain with E and F as defined in Lemma 2.1,

n
(1) jpudx(u) = lim fud!(u) = lim f f,(x)a¥ (x) =1 .
° i 17% ¢, (x)

s
o flx 7

Similarly, | ud¥(u) = 1. Hence, for # any linear function,

@ co
(2) [swaw - [guar
o %
By Lemma 2.1,
¢ o] [0
(3) f ata(a 7 ,0a8(u) 5 j ain{u-7,00aR(z) .

Q o



AP -,'..—..'.45

- 1] -

It is easily seen, then, that for any concave function, #,
® ®

I {\... s 20 Nt A

(4) J P(u)dE(u) siwkn)u\u) .
o]
In particular, for #(u)=1leg u,

. ® ®

(5) Iy(i:2) = ~‘[ log udE(u) > -f log udF(u) = IY(1=2) ;
o
while for #(u) = -u log u,
@
(6) -Ix(zzl) - -fu log udE(u) g -fu log udF(u) = -I!(2=1) .
o] o

Equations (5) and (6) yield the conclusion of the thecrenm.

In the matter of converses to Theorems 2.2 and 2.3, no general
theorems were obtained. In each special case investigated, equality of
the corresponding EK-L numbers was found to be equivalent to equality of
the risks, but a uniform inequality of the E~L numbers failed to imply a

uniform ineguality between the risks,

2.2 The Case of Normal Distributions. Attention is now turned to
the particular case in which hoth X and Y have normal distributions under

each hypothesis. Since, for normal distributions, both the risk function
and tha K-L numbers are {invariant under affine transfarmations, there is
no loss of generality in treating the situation givenm by the following

diagran:

o]
(2]

H §{0,1) §(0,1)
B, §(f,0%) Hmv)

where };_20, m> 0, and o'zzv.

Ty

=ua



PO

TR T LT

The K-L pumbers for X are:

2
(2.2.1) I,(1:2) = 3(1og ¢2-1+-15 + £51 , ana
Y 2 22

1 2 2
Ix(2=1) = %(log ? -1+ g©+ 15

Those for Y ars, of course, the same with the obvicus substitutions.
Theorem 2.4. The following three statements are equivalent.
(1) By =Ry
(11) Le(1:2) = I,(1:2) and Ip(2:1) = Iy(2:1).

(111) 0‘2 =v and W=z

Proof. By Theorem 2.2, (i) implies (ii). Further, (iii) clsarly
implies (1). Hence, it is necessary only to show that (ii) implies (iii).

Assuming {ii) to be true, then

2
@ S A
a

end
(2) log?’v_—z-*o’z-v'nz-/&z .
Suppose (iii) not true, in particular, that 0‘2>v.
Case I: 0'2> 1. Multiplying equation (2) by -% and adding to

equation {1) it is found that /1.2 is of the same sign as

(3) A(o'z,v)-(wl) log-;é*jyr'z-l-o"z*v .

S

But A(v,v)=0 and 2 3 A(d'z,v) = g (Jz-v)(l-az)< 0. Hence /,4_2< 0,
ea T

a clear absurdity.

NRoaca TT- /rz
= == v

Lase 1. Mnltinlving equation (2) by - b and adding

to equation (1) it is seen that m 1is of the same sign as

(43 (20 = (0% D 10g L o1 L e g2y

=y
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But B(v,v)=0 and —2—= B(¢?,v) = (log * ~ %)-(log = - -15), which is
3 0_2 v v G,z 62

negative, since log x~x 18 strictly decreasing for x>1. Hence, a similar
contradiction iz reached: nzs 0.

In either case, it must be concluded that if (ii) is true, then
a"?' =v and, a3 an immediate consequence; m= (L.

It i= noted in pasaing that the same line of argument yields the

Corollary: For v« 0‘2, Ix(1:2)2 II(1=2) Lnplies that Ii.(z:l)-) 1!(2=1),
while for v> ¢, Tp(2:1)2 I(2:1) implies that Iy(1:2)> I;(1:2).

For a further analysis of the case of normal distributions, assume
0'2 and pu fixed, (7'2> 1, and consider the (v,mz) plane. Ore can
immediately determine the region in xkhich Ix(]:2) 2 I!(1=2) and that in

which I (2:1)> T.!(Zzl). From equations

(2.2.1) I (1:2) { 2 }y(:2)

if and only if
Rz

(2.2.2) n° {: }hl(v) = v(log 02*‘&—;* ~v log v-1 .
T

I (2:1) {: }1!(2=1) 1¢ and only if
(2.2.3) nz{: }hz(v) - /LLZ" 0"2- log 0‘24 iogv-v .

That hl(v) < hz(v) for v < 0_,2 with equality only at v= 0"2 is a
consequence of Theorem 2.4 and corollery. (It can be shown similarly
that for v> (2, hz(v)<h1(v) for all v for which h,(v)>0).

Together with Theorem 2.3, these resuits yield the result that

for vg 0‘2,
(2.2.4) {(v,nz) 1Ry < B-!} < {(v,nz) 1n g hl(v)} .

any
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To investigate more fully the relaticn of thess two sets, in particular,
to see if, perchance, they are equal, the riak functions must be computed.
Fror this point on,both ¥ and 0'2 will be sssumed To be greater tham 1.
For the particular case under consideration, the probabilities of the two
types of errors when using the Bayes procedure against % based or I,

ol; an’ Ay, are easily computed.

2
(2.2.5)  ofg(g) = Pr(x?- (%_&) > 2 log -1-?%- | 8,)

2 2 2 2z
= l-Pr(lx*;z&_—ll < "o';%: 'v/f»*(a‘-l)log K| o |H1) ’

where "—Z:,“ and it is to be understood that (¢)=11r
1-%
}&2* (0'2"- 1)log }'(‘2(,"2 < 0.

(2.2.6) ﬁx(“t;-) = Pr(X?- (L-a#)2 < 2 logf_-% I 32) 3

Since the distribution of -x-'—u,& under E, is the same as that of X under

4 (2.2.6) can be expressed as

/-L 1
(2.2.7) Bx(%) = Pr(|x+ 0'2-1| < rzltl /‘/rf%a—z-l)log 7t 15,

where sgain Y 'IE% and it is to be understood that /31(4 ) = 0 whenever
rl.z* ( >-1)1og 7720"2 < 0.

Since Ry(Y, ) = Co(x(b)*(l-z;),&x(u, it is seen that for
’,Lz:,(rz-l)log 0’2)72 s 0, Ry(¥%) = . The computation of OCI(C)
and /6!(:') will clearly yisld the same expressions as (2.2.5) and (2.2.7)

& 2
with the obvious substitutiona of parameters. Thus, for m24- (v-1)log. 'r("".' 5 U,

Ry(T) = .
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Lemma 2.3. a-%- Ry() <1 for log? r(-d_%_— + log 0"2).

Proof. It is first shown that
(2) 3¢ (%) = (¥ )- frly)
Setting A= 4!'1.1,2*(0'2-1)103 '720'2.

. '
) §7 %(®) = - 7z AJ':'_F

"2 T2 2 B ,
(3) d_dglgx(ﬂ)'z(liz;)a ,V:__‘T.‘g 0_21 021[30-21+9 021].

Prom (2) and (3) one obtains, after some simplifications, that
a »y _d

4 _gqi s o 0
, ai.lg q-f—mff l—uﬂ?

- 0-2-1 c(1-7)e O -1
G(1-3 ) Na2T (-9 J

N

&
Since ﬁ S 1-¢ the bracketed quantity can be written as
1 7\
(-l oy - ag3s
{5) i:l,‘i-{ -8 G -1 + @ -1 =
Thus =

7 M%) = Ly oy egR)r (-3 i Ar(%)- fyr(%)
- o(x((,)-{sx(z)

2
Now if log “"(2 > '(”‘(;&2‘— + log 07'2), thern .2+ (g‘z-l)log 7?20"2 >0
-1

and therefore both oly(%)<1 and /ﬁx(;) > 0, which establishes the lemma.
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The preceding proof that % Rp( g )= 04 (% )- lgx(C) for this special
case i8 included as it illustrates a situation in which certain terms are
shown to be zero. Similar situations will arise later and the method here
used will bz referred to. The fact that the derivative of the risk curve
is 80 related to oL and ,5 is, however, a very general resuii for statistical
games with two states of nature, two actions, and a O or 1 loss function.
The fact is essentially demonstrated by Blackwell and Girshick ([3],
Section 6.3) and from their discussion it is clear that a rigorous proof
can easily be given the proposition that n R(g)= (g )- 15( whenever
the left member azists (as it does almost everywzhers).

Lemma 2.3, and its analogue for Y, show thgt .
=z it 1087{25'(}%'1‘1080”2) »

(2.2.8) By(g) 2
<l if 1log 7l2>-(—&—+log ) .

o

And
4 2 _ 2
=% if log 5 s-(g* lgv) ,
RA(T) 2
<l it log')lz>-(;!_—l+logv) .
From (2.2.8) it is clear that a necessary condition that Rys By is that
0'2 + log y‘2>-—* logv , or
(2.2.9) " P h3(v) - \v-l)(—“'— + log -ﬁ) .
-1

As a consequence of Theorem 2,3, it must be true that h3(v)5h..(v)
for 15 vs (. But it is easily verified by differentiation of h,-h,
that equality holds only for v= 0"2 Thus, any pair (v,mz) with

h.(v)< e hl(v) provides an example in which X is more informative in

-
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the sense of the Kullbach-Leibler information numbers but Rx-‘-aY fails
to hold.
Thus far the results have been necessary conditions that Ry Ry.
The most restrictive of these is that m25 h3(v). The principal result
of the remainder of this ssction will be that mzs h3(v) is also a sufficient
condition that Rx < RY
Lemmg 2.4. For fixed v>1, RY(Z;) is a non-increasing function of
m for each 7.

- Proof. From the eacpressmns already derived for M and ﬁY’ it

J_' 2 1\
follows that, with L= -3 ﬁlm +(v-1)log )2 v ,

Y.
R, AR o 142
(1) dzw'(—ﬁ--q) % =7 f o % at+ ,é o % at .
v
- v_}'l-l‘ S
L 1 m _\2 L MY 12
-5 (t ) (t- =)
2 v-1 1 2 v-1
= _71 P dt + fe dt
| ol
Let a2 b denote that a and b are of the same sign. Then,
Py omm (-2 Ld(e-B?
(2) 2 Ry (7)Y f[—‘% g W - ® Bee- lat ,
=L
_L __1_2 _ _-my2 -\ AY
.ﬂ(_]_ezv(l‘ :-1)_ e%(l‘ 1) . 3= (L+ 3%
on ‘AT ki . ” Av ©
-2 (1+-%5)
e 2 V1
L Ly BYY ) 2
NI 2v (t- 3.7 3 (4= 23 at
am ﬁ‘ e - 7( e .

-

mm——
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By a reduction paralleling that used in the proof of Lemms 2.3, the first

torm of the lasst mcabor of {2) is

differentiation in the second term is carried out, the resulting integral

can be evaluated and one finds that

2 o B2

(3) 2= Rr(g) L fv'e 27 V1
-3 (1 2 _lp_myR

ote 2 @3y e 2 (L-37) .
Multiplying the first term on the right by 1 = l Ll , (3) can be
reduced to
< 2 _1 2
Aamr Aa-m

(4) < (72 =L B e 1,

since the remaining terms reduce to zero in the same way in which the
first term of (2) did so. Since L0, it follows from (4) that
-g; B.!(l) < O and the proof is done.

It can now be concluded that there are two non-negative single-
valued functions, say ¢ and ¢2, of v, for 1gvg 0’2 such that for
o 5¢1(v) By < Ry and for u? ¢2(v) Ry > By. The possibility that
¢IE 0 or that ¢ZE*03 is not .at this point excluded.

Let # be a non-negative, differentiable function of v (v>1) with
#( 02) - I.Lz. Now set m=¢(v) and consider Rz(i;) as a function of v.

From equation (1) in the proof of Lemma 2. L,

L. o2
(2.2.10) "-:—- R!( J—l— (‘b—vC) dt..7f 2 {(t-G) 4t

where

C*’—’[—ﬁ(v)

and
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1

R 2
L~ v-'Ei Vn2+(v-1)1og ‘rzzv - WAchA‘l%{-’(:—‘ :

Differentiating with respect to v yields the aquation

(2.2.11) - - (1-v0)? 21 -0)?
{%ﬁ.-g; Rp(%) = 3%t o 27 -y 2
| -3 (L+v0)? -4 (140)?
+&%-,- o <V =7e 2 ]
¥ -2k (t-v0)? -4 (+-0)?
+ -ad‘—r(#ezv v’-)'(e )dt

The first term of the right member reduces to zero as in the preceding

proofs. Then, cerrying out the differentiation indicated in the last

term and rearranging,

(2 2.12 L (t_vc)z
iﬁf n!(z;) = - f (t-vC)e 2 das

i-% -
-L
L 1 (t-0)2

-7f (t-C)e dt]
L -
R R N (tz-vzcz-v)e 2v at .

Evaluating the integrals in the first term and proceding in the same
manner as in going from (3) to (4) in the proof of Lemma 2.4, one has,
. -1 (wve)? -k v

_'j f =l ac v- v 2v
Tv R‘!(L ) = dv [e - @ ]
- & (t-v0)?

2 (1;‘2 v2e-vje ¥ at
v 'J_'

Or,

o b § geiiimn
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) ]:‘2+ ZGZ
(2.2.13) aiv R!(§)«e-r i—; '_ﬁa A
L 2k (4ov0)?
PN S j (tz-vzcz-v)e 2y at ,
2N %

where .
dac (v—lld:ivl-;@(v)
dv 2(%1)‘4 d(v)

The second term cf the right member of (2.2.13), the integral, is
negative for all 7, i.e., for all L» O, since for small L the integrand
is negative and as L increases beyond the point at which the maximum value
of the integrand is zero, the value of the integral increases monotonically
to a limit whose value is easily found by a direct integration to be zero.

It may be notad at this point that for 4 . 0, i.e., for

dv
2
g(v) = -(-j;_-l? (v-1)2, the derivative ga—v RY(C) is negative for all L.

Combined with Lemma 2./ this yields

2
(1) By s Ry for 1gvg (]"2 and n> s G’z&:F (v--l)2 5

and

2
(11) for v » a n?y —F (v-1)2 .
szR! cr v 0,2 and n 2(02-1)‘ v

dowever, 1st @ be the function h, defined by (2.2.10). It ir asserted

3
that for this choice of @ the right member of (2.2.13) 18 less than or
equal to zerc for all L>0. To show this, note first that with # =h

3,
ac + vo°
av = o 2—51;%5 . XNow consider the right member of (2.2.13) as a function,

Y, of L for L>0. Y 0)= Y(+w) = 0. Thus, to show that Y is negative
for all L, it will suffice to show that there is an L' such that QJ'(L)SO

for 1< L' and Y'(L)>0 for all Ly Lt.
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- :,}v- (L+v0)2

(2.2.14) $1(L) ==t= e

v [g% (v-1) {(L-vc)ezm- (mvc))I

L EEmretoy (210, ),

2 2
& - B (1(P10-1)-v0(62101) 14 K (62001)

<
- L——‘;" (ezm*l)

<
~ L(ezm*l) - l"T'c- (ezm-l)

2 2
R JIREL. uPPRP L x

Denote this last expression in (2.2.14) by f(L). Then

2
P = E¥rezca- %541,
and

(2.2.15) ye (L) = 4CRe* 0 (1v0) .

From (2.2.15) one sees, then, that b"‘(L) is negative for L< vC and
is positive for L>vC. Hence, zf 1s concave on the interval (0,vC) and
convex on the interval (vC, +o). But 6(0)-0 and é‘("m) = +o0. Hence
there is an L' such that 3‘, and therefore Y, is negative for L< L'
and positive for L>L', In this way the proof is complste for the

Lemma 2.5. For mz.hB(v), v>1, R!(‘(,;) is for each 7, a non-increasing
function of v.

Combining the resuits of Lemmas 2.3, 2.4, and 2.5, it is seen that
the following theorem, giving restricted necessary e.nd sufficient conditions

for wmiform inaqualities betwesn the risks, holds,

ey

n

——

e
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Theorem 2.5. For lgvg 0'2

{ (v,n?) t B g Ry = {(v,a) 1a° < ha(v)} .
For v 0'2_>_ 1,

{(v,mz) s Ry 2 R!} = {(v,mz) : no > h3(v)} :

It would at this point be pleasant if a choice of @ counld be made such
that for mz- g(v), v 1, R!(Z;) would be for each ¢, a non-decreasing
function of v, i.e., such that UXL) > O for ali L > 0. T%o nscessary
conditions for such to be the case are immediate, namely, Y '(L)s O for

all sufficiently lazge L, and S= < 0. But from (2.2.14),

2. 2.2
$r(0) 2 L (v-1)[(1-v0)6? - (Lve) 7+ EELEST (0200

Now let - % (v-1)=P> 0. Then,

o210 L2-v2CR.y

e ~P(L~vC) +

2 2
L -v?'c -v
e +P(L+vC) ,

PrL) &
and for given P and v this becomes and remains positive as L increases.
Hence, one cannot find a curve along which Ry (%) is for each 7 non-
decreasing in v, except the degenerate case v= 0‘2, where R!(T,) is
uniforzly (in %, ) non-decreasing as m decreases.

Now by lLemma 2.3 there is a function, csall it hA’ such that for
lsve 2

2 2 2
{(v,m) :szhr}-{(v,m) ! o g_hz'(v)} .
From the preceding paragraph it follows that in general hL/ h2’ since

foer any point (v ,mi) let By be the associated risk curve (in the
1 1
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.2 ; .
obvious way) and let B(vl,mi) = {(v,m"') : R! > Rzl} . It i1s asserted that

“
the lower boundary of B(vl,m;_) does not in general coincide with the line
of constant I(2:1) through (vl,mi). Suppose it did. Let (vl,mi) lie on
the curve of h,, 1<v,< 6‘2 Then for (v,nz) also on the curve of b, and

l5 v< v,, one would have R! 2> RI > Bx But this would imply that for
- 1

each (, RY((,) is non-increasing in v, for e = bz(v). Since this has
besn just shown to be impossible, and hk > h2 according to Theorem 2.3,
it must b concludel that B, > b, for 1<V a*.

Many of the interesting results of this section can be summarized
in the following way. For 15vg g™, the four functions by, h,, Py

and h4 determine five sets: for m2 < h,, X 1s more informative than Y

3’
both in the Kullbach-Lzibler sense and in the sense that Rx < R!; for

h3 < m2 s hl’ X i3 the more informative only in the Kullbach-Leibler

sense; for hl < m2 < hZ’ neither random variable is the more informative
in eilther sense; for h2 S m2 < h,, T is the more informative in the
Knllbach-Leibler sense only; and for h4 < m2, Y is the more informative
in both senses. From the results and methods of this section it can be
verified that if v»> 0’22 1, then for mzsh s X is tus more informative

in each sense; for h, < m2 < hz, X i3 the more informative in the Kullbach-

4
Leibler sense only; for h2< m2< hl_. neither is uwore informative in either

sense; for hl < m2 < h3, Y i3 the more inform:tive in the Kullbach-Leibler
sense only, and for h3 < m2, Y is the more iInformativs in boih ssmsss. The

function h‘,' has not as yel been explicitly given.

-

-



2.3 The K-L Humbers in Relation to Certain Classes of Distributions.
Attention is naxt turned to another and interesting point of view
with regard to the X-L information numbers. Suppose that the densities
under conaideration are elements of a class, { b ) weﬁ}, of densities
positive on the same set. Assume that there 1s an Abellan group, T, of
tranaformations of the domain of the fw'a and a corresponding group, ?,
of transformations of {i such that if X has density f , then for tET,

t(X) has density £, - IJ.(t , that is, d‘P(t-lx)' fA(t-l)d“P(x).
t w)
Finally, assume that given ), and ¢, in (2, there is a t€T such that

\

wy, = r.(wl;.
Theorem 2.6. The K-L numbers are functions only of the transformation

that carries fl into f2 and not of 'tl and f2 individually.

Proof. Choose a t€ T such that fz(x)- fl(t'lx)lu(t'l). Then

® £, (x)
{1) I(1:2) = f fl(x) log == ) d“P(x)
- 5, pe™h
3 £, (x)
- -log p(t7h)+ f £)(x) log 2= a¥(x) .
s £,(t "x)

To show that the value of the integral 1s a function of t only and does

not depend on f,, choose any f e-{_ } and let f; (x)-f (s"1x) },L(a

Then, with y= a-lz, g1 7= gl em g1y 1z, and (1) can be rewritten as
®
-1 [ z (v)
(2) I(1:2) = <log p(t ")+ J £, (y)log -—9——"'-) a¥iy; .
1y
‘o o

A similar proof holds for I(2:1) and the proof is complete.

-
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Whenever it happens that equality of the X-L numbers for I and for Y
jmplies that the gsame transformation that carries f, into f, also carries

into g_, it ®ill follow alao that for some tET, Y and t(X) have the

Z

&
d
same distributions under each hypothesis; thls will be denoted Y = t(X).

In such cases it is clear that equality of K-L numbers implies equality

of risks., That all the conditions on the group T given above sre not
necessary for equality of the K-L numbers to imply equality of risks appears
immediately from the case of normal distributions where the group is not
Abelian, the 'Jacobians' are not constants, and the correspondence uci¥een
transforrations and K-~L numbers is not 1-1 but still, equality of K-L
nunbers implies equality of risks.

Lemna 2.6. Y ¥ t(X) implies Ry= R, and if the likelihood ratios,
fz/'f.1 and gz/gl, are monotone in the same direction, then Rx- R! implies
that T 3 £(x).

Proof. The first statement is clear. Without loss of generality,
let X and Y have the common density h wmder H; 2nd densities f and g
respectively under Hz. It then suffices to show that £=g, for then the
same transformation that carries h into f carries h into g.

From Theorem 2.1, if Rx- By, then

~
d

(1) » J h(x})d¥(x) = h(x)dP(x) for all 720
e s7 e 7

e foes ek

{ h(x) .;?‘L} = {.-zx:; '/2(7)}

-
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Since =
dr.d M XM 1+
vLav g 1 U2 R2onna

(2) {x: £(x) s 1 h(x)} - {x s g(x) g 7 h(x)}
Ir f(xo) > g(xo), then an %[ can be found such that f(xo) < 71h(xo) < g(xo),
contradicting (2). If f(xo) < g(zo), then s similar contradiction arises.

Therefore, £ = g.

As an example of such a class of densities and transformations as is

being considersd in this section, consider the ["-distributions:
(2.3.1) fw(x) =ﬁé‘t§ K1 g 0x " (e0>0) ,

with T= {tc-: tc(x) = c.’x}; F'(tc)- ¢; and %c(w) = ccd,

Suppose the density of X has parameter wi and that of Y has

parameter )\ 1 under Hi' Let w2= 601, then

o e 1
(2.3.2)  Ip(1:2) = x[1log B, " ) 1= otllegs -1+ a) ;
and w
w w, -
$q) = -2 _ 2 14, 1
Ip(2:1) = otllog B, " T, 1= Klog a-1+2) .

Equations (2.3.2) give the E-L numbers explicitly as functions of a,
where a corresponds to the transformation carrying 1;)1 into £ “)2. It

7\2= b>\1’ then the expressions for the K-L numbers for Y are given by
(2.3.2) with a replaced by b. In the question of equality of information

numbers, then,

(2-303) 11(1:2) = 11(1:2) if and only if log E = b3 3

and
Iy(2:1) = I,(2:1) 1f end oniy if log% = % - Ja' .
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Equality of information numbers in this case implies that ab{b-a)= b-a
and hence that sither (i) a=b, or (ii) eb=1. If (ii) but not (i)
holds, then log b-b = log % - £ . This can easily be shown not to be
true for b#1. Therefore a=b and an example is provided in which the
relation between the E-L numbers and the group of transformations is 1-1.
Also note that if the E-L numbera are equal then for some c¢> 0, )\1- cuwy

and %2==ccdb, i.e., Y and ¢X havs the same distribution.

3. Designs for a Binomial Testing Problem. -

3.1. The Problem. In this section consideration 1s given to specific
design problems in which the random variables have binomial distributions.
Again it is supposed that there are two hypotheses, H, and H,, with [&
the g8 priori probability that Hl is the true hypothesis, and that one
must decide which of the two hypotheses is true with a loss of one if the
decision is incorrect and no loss if it is correct. There are available
two random variables, X and Y, having bincmial distributions with
parameters p and q, respectively, under Hl and paramoters q and p,

respectively, under Hz.

() B p q
(-z) B, aq p

Suppose that the observations are independent, the total number of
observations to be tak~n, n, is fixed, and that the cost of observations
is independent of the true hypothesis, the random variable observed, and

of the result of the observation.
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The first problem considered is that of non-sequentisl designs, 1.o.,
before axperimentation it muat bpe decided which of the observations are
to be of X and which of Y.

The second problem treated is that of sequential designs, i.e.,
rules which for each j<n tell one, as a function of the information
availabls after the jth experiment, which random variable to observe
on the J+1st experiment.

In each case the principls of choice among possible desizns is,

of course, that of minimizing the Bayes risk.

3.2. Nop-sequential Designs. Since the observations are assumed to
be independent, the non-sequential design prcblem reduces to determining
for each &, the optimum number of observations of X.

Let Rr(‘C,) denote the risk against ( if X is observed r itimes and
Y n-r times. Assume for definiteness, and without loss of generality,
that p>q and note that by the evident symmetry, Rr("c.)= En_r(l- AR
Furthermore, there is no loss of generality if it is assumad that
p(1-p) > q(1-q), for if not, one would, by interchanging p and 1-p, q and
l-q, and X and Y, find oneself in the assumed case.

As before, it will be convenlient to consider 7( -i:pz-" rather than z;
itself much of the time.

For genersl n, the solution is characterized by a division of the
interval [0,1] into intervals wiih the property that for z in a given
interval a certain number of observations of X, i.e., a certain value of

r, 1s optimal. In some of the intervals the optimum value of r is not

unique.

-y
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The general equation for the value of Rr(l’,) is given by

n min(k r) "pf"'i(l_p)1q==:=k"'i(1_q)k‘—'i'¢‘
(3.2.1) R ()= ) E Dminy P
i g kév-_; i-ma;;m-r) ke {ﬂ»r i(l'q)*Pk - 1(1'P)k-1(1"b§

The preceding characterization of the solution follows from the fact
that Rr is piecewise linear for each value of r.

The turning points of R, occur for those G for which the two quantities
whose minimum is taken in (3.2.1) are equal, i.e., for

2r=- i k=21 {5.)
7( - (g) r n(p %-q ) . Since g—ﬁ:&’- < 1, the first turning pcint occurs

for that k and i1 which maximize k-21, which is k= n~r and £= 0. Thus the
n-r
)

rl-
tirst turring point of R_ is (%) (%:g , which is a decreasing function

g9y (kepy” T
of r. For all 7 such that7(<(p) (1-q) » RUAZ)=C.
The functions Rr can now be compared for small %, or equivalently,
for small 77
n
(3.2.2) Rr(t‘) =7,  for all r and for 7( S (g) ;

R (%) <y 1

Br(C)"C.: for r<n J‘

tor @) < 7 < @FED).

n
Thus there is complsts indifference for 0 < » g (g) and (%)n is ihs
{ b
left end point of an interval in which the unique optimum value of r is n.
To push the analysis a bit further along the )z axis, consider the

equaticns giving the second segments of Rr'
(3.2.3) R (%) = q"(2-p)" "+ G11-pT (2-q)" " - q7 (2-p)"7T .

The intersection of these lines, for r<n, with that for r=n ococur at
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qf (1-p)T- AT
(3.2.4) =- ==
7r pr (1-q BT . n r

Now setting t=n-r-1, '71, 7(1,*1 if and only if

(31255) ap¥l-g*l g (.5)%-g*

% Tt
(1-q)%*1-p¥1 = P (1-q)%-p

Since 1-g> p, both denominators are positive and one can obtain the

equivalent relation

[(1-p) ¥ (21-p) ¥ Lg+ . . 2P (1~q) ¥ Lpr (1-q) ¥ 2ps . . .+pY]

> [(1-q)t+(1-q)t-1p+ A .*pt][ (l-p)t-lq*(l-p)t-2q2+. : .*qt] .

t
Since adding (1-q)% f (1-1o)t'kqk to the left side and (l-p)t Z (1-q) ¥ FpE

to the right side will yield an identity, }Zr>‘;7r 41 is equivalent to

(1-p)® i’u ¥ - (- q)ti (1-p)¥ %% >0 .

This in turn can be written as
(3.2.6) t (1-p) ¥ (2-q) ¥ EL (1-p)Xp% - (1-9)5¢K1 > 0 .
k=0
But {3.2.6) clearly holds, as p(l-p)> q(l-q), and hence, )Zr 18 strictly
decreasing in r.
The mtersection of the second segment of R with that of K Rl is at

n-1 ™ (9') (3) And since the second turning point of R occurs at

7= (%) ( ) > 7, and that of R, is at 7] = (%)3-2 > 7 p-q» the

solution for a somewhat larger range of )z can be given.

Dt s i e Sy
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(3.2.7) For 0< 1< (%)n tkere is indifference between all r's;
for (%)n< n < (%)n-l n is the optimal value for r;

and for (%)n-1< 7? <t n-1 is the optimal value for r.

The value of u in (3.2.7) is dependent upon conditions of the foram
ps(l-p)t{: }qs(l-q)t.

Not only does the value of u vary with cases, but the cptimal valume
of r in the interval having u as its left end point will also vary with
cases. It would appear thet in the attempt to gein a complete solution,
one shortly becomes bogged down in a morass of special cases.

Certain solutions for smali valuss ¢f n ware computed and are given
below as they appear in relaticn tc the 7(-&113 for O« 7< 1, which
corresponds to O< {, <1/2. By the symmetry about , =1/2 noted before,

the solution for all 2', can easily be determined from thess. {I denotes

indifference).
p=1
cptimal r: I : 1
I/ 0 q 1
P

optimal r ¢ I S 2 3 1 3 A2
7 0 @2 & gliq 1
p P p l-p*q
1> (1-p)%+ (1-9)%:
optimal r : I 2 3 1 Q2 -
2 0 (32 q i=p
P P 1-q

-
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n = 3: (l-p)zﬂ'l-q)2 <1-8;

optimal »r

;
A
N
Z
Q
;

o
oy
o ja
-
w
F o
o o
g
[
"
30
Q

1-py2 1-
(l_ﬂ) A %{TI%} 1

or

optimal r : 3 3 H 2_ 3
I

according as A,g_ﬁ}___q)__q_(__gl_ is greater or less than ( )

p%(3-2p)-p(1-q)?

loe
4
1l
D
t 8]
gt

1-%9 < (l-p):‘)'*(l-q)2 <1l*+pq:

optimal r :_ I : 3+ 2 i 3 : 2

optimal r I 3 2. % 3 ( : P 2
)3 92, 91;:2%
K| 0 (p) (p) pli-q c 1
- (1-¢)2-(1-p)?-2pg (3~
1- (l-p)a-(l-q)z-qu(l-q)

)
(@]

where C =

These are the solutions for what appears to be about half of the cases
for n=3.
Thus, for small values of 7 the solution haz been found for all cases,

7

while for the remaining 7('8 there is no apparent pattern and the solutions

-
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(to say nothing of their computation) even for small n lead one to the
conclusion that it is just about hopeless Lo seek a ccmplete general
solution. It should b2 noted that the symmetric choice of the parameters
above is clearly a help rather than a hinderance; nearly any choice of
parameters will yield a similar morass of casez. The exceptions are
those choices of the parameters for which, for n=1, Ros Rl, or R°_>_ Rl.
In such cases, the optimum value of r 18 zero or n, respectively, for

all n and %.

3.3 Sequential Designs. Suppose that there is a total of n experiments
to be performed, or observations to be taken. Let § denote the g priorgl
probability that Hl is true and ij the g posteriorl probability after
having observed the results of the first j exporiments. Row to obtain
the optimal sequential design one must decide after the jth observation,
as a function of the information obtained in the previous experiments,
which is contained in C_j, and the number of observations remaining,

n-j, whether to observe X or Y on the j*lst expariment.

Let fn('¢) be the Bayes risk if the optimal sequential design for
n exper iménts were used. If, now, n+l experiments were contemplated
and X were observed first, then the optlimnl design foliowed for the remaining

n experiments, the risk would be
(330 &n,%) = £,GEFTgy) (e (1-G)a)

L TP g g DI (P + () (1 T))

If Y sare observed first and then the optimal Gesign followed for the

remaining n steps, the risk would be

"
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(3.3.2)  &(Tn, %) = £, (=3 % - 3)p)

(1-g) &
e s ) (g + (- (- 1))

Hence, the following functional equation is obtainsd
(3.3.3) fn,l((() = min(g(X,n, Z,),g(Y,n_. C)) -

The design problem is to determine those & for whick g{X,n, %)< g(¥,n, T),
#(X,n, )= g(¥,n,% ), and g(X,n, §) > g(¥,n, ), respectively. If there
were n+l observations remaining to be taken, then for { in the first
set, X should be observed next, for ¥ in the third amet, Y should be
observed next, while for & in the second set there is indifference between
X and Y, 3aince one would do equally well starting with either.
For n=1, the sequential and non-sequentiel der.:uc coincide and fl
is easily found. In theory, cne can tken, by use of the equation (3.3.3),
compute fn for any n. This method is so complicated as to be practically pro-

hibitive. A method is given below for obtaining the sequential designs without

heving to compute each of the risk functions. ZEven this method bogs down in cases

a8 n increases; howstver; for given values of p and q, it would be possible to use.

Row it is clear that fl is plecewise linear and it is concave. It is
easily seen then that both g(X,1,¢ ) and g(¥,1,%,), and thersfore £,, are
also plecewise linear and concave. Furthermore, the turning points of

P
1 ok ithow
g(X,n, {) are precisely those I such that eithe _{{__—PG* e AP

(1-p§](: +(1-q)(1- %) is a turning point: of fl. Likewise, the turning

points of g(I,n, &) are those I such that either Az (- Z)p or

A 1;5)?-]3-5 is a turning point of f;. In terms of the varisble >E),

% 1e a turning point of g(X,n,%) if and only if g‘r() or ﬁ’( is a

n
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turning point of £, and is a turning point of g(I,n, ) if and only if

q 1-q
p7 or 1-p7 is a turning point of fl.

For n=1, the solution can be expressed by diagram.

optimal choice s _I s X :
0 2 1
1 P

Since the same kind of symmetry about ¥ = 1/2 is present as was noted in
the preceding section, to give the solution up to 7 =1 is sufficient.
The twrning points of £, are (in terms of >(), 9/p, 1, and p/q.

Arranging the turning points of g(X,n, %) and g(¥,n, &) in order,
one has, for q(l—q)2< p(l-p)z,

for g(X,n,%): (%)2 (g) %&E%i 1
for g(¥,n, 7 ): g-%ﬁ} %Eg 1

while if q(l—q)2>p(1-p)2, one has the turning points

9,2 q 9.2_1:1}
for g(X,n, g ): (P) p p(l-p
. 1-p) i-p
for g(¥,n,7): %%]—__—g-s- e 1

In each case, these turning points divide the interval (0,1) into

sub-intervala. If s (%)2 and g is observed, then )(1- (éé;) will
be less than q/p or less than Qg.(l:'.ﬁi according as the observed value
of X i3 1 or 0. Since in eitheg i:;z 7,5 a/p, it would be optimal to
.obaerve Y at the next stage. Similarly, if Y were observed first, then
My < 1 regardloss of which value Y assumed. Fence, it would then be
optimal to observe X at the next stage. Now, since for independent

observations the order is immaterial, the two risks must coincide for

B (q/p)z. In a like manner it is found that in eack of the two cases

which are distinguished by the ordering of the turning points, the interval

whose left end point is q/p is aiso cn izizzval of indifference., Knowing

that g(X,n, %) und g(I,n,% ) are each piecewise linear and concave, and



e

i e

1

- 36 -

that they coincide at 7 = 1 as well as on these two intervals of indifference, it
is sufficient to determine the solution for n= 2. There are two cases for
the solution

(3.3.4) TPor p(1-p)? > q(l-q)2

ae

optimal choice 3 I I
& o @?

—
e

Y
'I'T‘
[ e’

P\1-p,

Por p(1-p)? < q(l-Q)z

optimal choice 3 I ¢ X ¢ I ¢+ Y
92 9 1-p
i 2 ) P 1-q !

Nox the method for obtaining the solution for n*l from that for n
follows that given above with n=1. PFrom the turning points of !n‘
determine the turning points of g(X,n,%) and g(¥,n, %) and arrange them
in order (considering the necessery cases). Determine those ?) for which

both 27 and %:{ 7 e in T- or I-intervals of the solution for n;
determine those 77 for which both %77 and %}g 7 lie either in sa X-

or an I-interval of the solution for n. The intersection of these two

sets will be the indifference intervals in the solution for n*l., From this
informatisn, the order of the turring points cf the two functions g(X;n,Z )
and g(Y,n, §), and the concavity of these two functions, most of the solution
for n+l can be inferred. For n=1, the entire solution for n=2 is determined
with no further work, but for most of the cases for larger values of n, the
two functions g(X,n,% ) and g(¥,n, ) will have to be computed and compared
at a few isolated points.

oy

Ly
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It is the computaiion and comparison of these functions at isolated
points, as well aa the multiplicity of cases for larger n that makes even
this method imperfect for obtaining general solutions. However, for given
values of p and q this procedure could be used %o determine the optinmal
design for moderate n without undue difficulty.

This section is concluded by giving the solution for n; 3 after
£irst remarking that the usefulness of the method is not restricted tc
problems in whick the parameters are symmetric.

(3.3.5) Por p(1-p)? > q(1=q)2 and p(1-p)> < q(1-q)? :

optimal choice ¢ I ¢ X I : : A S
p 2
7 0 (9.)3 (3)2 ___(L:ﬂl 1- lp 1
! P P p2(1-p) p pll-p 1-q

For p(l—p)2 > q(l-q)2 and p(l-p)3 > q(].-q)3 :

optimal cholce : I _ ¢ X s I

: X : I H
9)3 a2 o(1-q) a a.%l_s%- 9.2_%21- -
K ° ¢ () o*(1-p) P PP p(l-p
For p(1-p)? < q(1-q)® and q¢°(1-q)2 < p°(2-p)3 :

optimal chcice 3 I ¢ X X H I ¢

—

233 92 a afl-
7 o & @® 1&—5} e e

- "
For p(l-p) <qu—q)2 and qz(L-Q) >p\1-p}3;

[}

optimal choice ¢ I _ : X 1 : Y ¢ X H I
gy3 92 £ p2 g a.fl:_y
7 o G Py G * p p(l-p)

where 4 = L_Q.L(.LLQ.LL.(.LSI

(1-q)%(2-p-q)-p%(1-p)
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4. Some Non-truncated Design Problems.

in the preceding sections sttention has been focused entirely on

design problems in which the sample size was fixed. A4 problem in which
experimentation is terminated by a sequential stopping rule will now be

considered.

4.1. A M m Walk. Suppose, as in Section 3, that the two
random variables, X and Y, have binomial distributions with parameters
under the two hypotheses, Hl and Hz, as given by:

I Y
(%) H » q

(1-z) B o p  (p>q, p(1-p)>a(l-q)).

Again, 7. is the a priori probstility that H

~

, 1s the true hypothesis
and 1t is given that one must decide which of the hypotheses is the true
one with losses as described in the previous sections.

Let an observetion of X and an observation of Y have the same cost.
A design is now sought which will minimize the expected cost of achieving
i Bayes risk from the terminal decision of at most a fixed amount, r. This
is equivalent to finding that design which will minimize the expected number
of cbservations required to move the g posteriori vrobability for H1 to a
position either in the interval [O,r) or in the interval [1-r,1].

et 7 = & and ﬁ:j denote the a posteriori probsbility for H, after

1
having made the first ] observaticns. It will be convenient to consider

the problem in terms cf thé variable Z)‘ = log 72 = log T-% . Then lat

-

LT
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-1 E
a ogq
b'log‘}:'s , and
A=-logi'f—r g

Let n denote the smallest value of j for whick either (, PEL
Z;J 21-r. It is seen there are to random walks, beth on the ) axis
with boundaries at A and -A, one of which is determined by the results of
observations of X and the other determined by the results of observations
of Y. After having made j observations one finds that the walk has
arrived at the point a‘j. Now the choice must be made as to whether
it is better that g 341 should be determined by an observstion of X or
of Y, i.e., whether the next step should be taken in the X-walk or in
the Y walk. 4 rule is desired prescribing for every situantion which walk
should be taken 1n order to minimize the expected walue of n.

If at the j*l“ step, X 1s observed, then

5j+a with probability p under H, and q under H,,
(4.1.1)  Jyp =
J ’j'b with probability l-p vnder Hl and 1-q under Hz.

Letting Ey denote expectation when X is observed, it follows thab
(4.2.2)  Byly,0- ¥y|E)) = p log ¥ +(1-p)log %:—g = I(1:2),
By 0¥ 0y 8l8,0 = a log B +(1-q)log =2 = ~Iy(2:1),
and Extxj*l'?sj] = CjIx(l=2)-(1- CJ)Ix(zzl) - ‘(‘,JJx-Ix(zzl).

Since the divergence is always positive, Ex[ ) 41" o) J'] is an inoreasing

function of 5‘ j and is zero for
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(2:1)
(4.1.3) Ty = 1- g - ix;—jx—- , l.e., for
(2:1)

= 5 = log IXH—ZT .
Similarly, if Y is observed, then

?j j-a with probability q under Bl and p under 112,

(4.1.4)  Byoq ™

¥y*b with probavility 1-q under H, and 1-p under H..

dlso

(4-105) x![ vj#-l. Xj‘al} =-q log P #(l—q)log 1- . Ix(z l)
BI[\61+1- 61\32} p log i1 ‘(l-p)log __; - ‘&(122),
and Byl §409-0 47 = Cyiy-Iy(1:2).

Hence, EI[ Uj*l- 61] is also an increasing function of 53 and is zero for
Ix(l

(4.1.6) zj-——Jx——’C ,1e,for?$j-é‘

To verify that & >0, L.e., that Lp(2:1)< Ip(1:2), let
#(p) = Ip(1:2)-1,(2:1). Then

G + aln_—~ Vv . 1- o~
#(p) = (P*q)logf; s (2-p-q) 10 I:g . e
#r (p) = .(_LML-.Q). )
p%(1-p)?

With p>q and p(1-p) > q(1-q), then 1-q> p>q and q<1/2. Hence, # is
negative and concave for p< q; zera at p=gq, convex and positive for
q< p<1/2, and concave for p>1/2. But #(q)= log ;l_;_g > 0. Therefore,
#(p} >0 for 1-q> p>q.

e
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Therefore the ' axis can be divided into four parts and on them one

wil) have,

(42.7) -2l 0q- 840> Bl - 81> 0 gor -a<fy<- 4,
Byl gm0 ) > Bl B ¥y) >0 tor - f < <0,
Re(Y go= Uy) > “Byl ¥yuq- §g) > ©  for O< 53‘5*’ and
EpUA gorm ¥g) > Byl fporm 8y >0 for <y <n

Thua, for } 3> 0 the X-wald yields an expected step greater in magnitude
that the Y-walk and the expected step is in the 'right' direction, i.e.,
towards the nearest boundary, 4. For ),‘ j< 0, the Y-wald enjoys the same
adva;xtage, the nearest boundary being -A.

These considerations lead tc the conjecture that, at least for a small
relative to A, the optimal design is to take the X-walk on the j*lﬁ‘ step
when 3> 0 and the Y-walk otherwise. (It should be remarked that if

(1-p) < q(1-q), the same results will hoid with X and Y interchanged).

Now let X denote that design which requires that X be used at
eéch step and Yoo that design which requires that Y be used at each step.
Denote by Eln|Xo, § sH, 1 the expected number of stéps in the X-malk with
§ as its ;tarting point when 81 is the true Lypcthesis. Using Wald's

well known approximations,

o ————
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zau (A+3)n )
e -0 .
et
e -1
]'E ’
1-q

28t__(4+2)t
N

e -1
i-p 4
1-q

’ {e-ut_ o (as 0 )t}
a=0 =202 =
oAt
-(q log 'g +(1-q)log IL:-E)

| . VI
= Rk e-cau_g-(l‘d a
=-2Au
o =1

-(p log 2 +(1-p)log ﬁ)

(4.1.8) Eln|Xo,§ ,H
P logg +(1-p)log

Eln|Xw, %,H,] =
Qe q logg +(1-q)1og

Eln|Yow, & Hy) =

2n|Yw, b‘,321 =

ulog B ulog ip
q 1-q

where u¥ 0 satisfies pe +(1-ple -],
t log 2 t log i

and t¥ 0 satisfies qe % 4(1-q)e l-q o 4,
It is easily seen that u=-1 and t=1. Then racogaizing the
denominators in the above expressions as K-L numbers, it follows that
(4.1.9) Eln|To, ) >Eln|Xew,Y ]

= {B[n Yo, b‘,Hl]-E[n\Ico, b‘,ﬂll}-(l-C) Eln|Y o, b‘.nzi-llnllw,E 332]}

Ip(1:2)-1.(2:1) 20 -4~ 20 4+3
] -Iﬁlzzﬁ%&l) {t(&-b‘-% QFEI—)*(I' §)(a-%-24 Q?E:;— .

Noting that the firat factor is positive, then by adding 1-1 to the

fraction in the iast term and rearranging, it is found that

-
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(4.1.10) Bn|Yow, § 3-Eln(Xo,d ]

s-d As Y
A7 (a-¥)-(1-7 ) (ae B)-28Y, 2———-1-— +24(1-7) ’———1’*
e -

A+D’ 20 -a-F ¥,
= - P+a(27-1)+2a 822 -:w(, e ¢ v o1
e

o 2h oy ) )
L :

It can be easily verified from (4.1.10) that the difference is zero

for b‘ =0 and \d =A. It will bte shown to be non-negative for Og X g A.

d
Noting that -—g—br and denoting the last member of (4.1.10) by
J+e
Y(¥), then

27 A wf -a-
(4o1.11) Wa(y) = 2adPo L= e 1. (8 e )
s ° (1»e°7* 2h_) T 3.0 EE G T 2y
R (QLA-U‘ * QA’&) - l_-_efv (e- ¢ hgh? " ot b‘-l)
(1*93‘ )2 o ?hy o2, (l*ev Y4 s 2 92 -1 j

Simplifying (4.1.11) and removing positive factors ylelds

==

(4.1.12) W (g "8 (2rchred)red - (2rebrendje?hr o0

At =0, the right side of (4.1.12) is positive. At J =4, it equals
e'A*z*e -26“", which 1s negativs at least for A>1lcg % . By differen-
tiation the right side is found to be decreasing in an interval [C, ')

and increasing for ¥ > x'. HKence, Y"(3) is firsi positive and then

negative as J increases from O to 4 (A> log %); i.e., ¥ is first convex

and then concave. It remains only to show that '}"(0) >0 to assure that
Y(¥ )30 for Og ¥<a.

Yr(0) & 4+ e?B(a-2)+208-20078- 0 %A (412)
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Denoting the right member by S(A), successive differentiation shows that
S(0)=S'(0)=s"(0)= S"'(0) while the fourth derivative at zero ia posiiive
for all A 0. Hence it can be concluded that Y'(0)> 0 for A>O0 and by
the evident symmetry in the problem it follows that

>0 for X >0
(4.1.13) ElnlYo, § }B(z|Xw,¥ ]

<0 for X<0O0,

Thus the design which requires the use of X at the j*lat step if
‘6‘1 >0and Y 1f 5J< 0, coincides with the design requiring the use of
the random varialie corresponding to the smaller of El’anoo, o) j] and
Eln{Y oo, T41. It also coincides with the following design given in terms
of the K-L information numbers. lLei Jx(’C.)- Z’,Ix(I:Z)*(l- C)IX(Z:l).
Then JY(?;)- GL1p(2:1)4(1- %) 1p(1:2) and J4(Z) > Jy( %) tor Z >1/2.
Hence, the design just described could also be expressed by the rule:

;t the j*lst step use the random variable correzpcnding tc the larger
of the numbers Jy( '?.‘,’j) and Jo( Z;j)'

Denote this thrice-described design by M. While N has not yet been
shown to be the optimum design, it can bs shown to be better than either
X or YToo. This comes as a special case of the next resuit, which
concludes this section.

By & statlonary design will be meant a design in which the choice at
the §*1%% step is a function only cf the g posteriori probability after
tue jth step- zj'

Lemma 4.1. Let X and Y have densitias fi and 8> reapectively, under
hypothesis H, such that both log f,/f; and log g,/g, assume positive and

negative values with positive protebility. Iet Dl and D2 be two stationary

-
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designs and D that design which requires, at the j*lﬁ' step, the random
variable corresponding to the smaller of E[nlDl, 831 and E[n'Dz, I,
Then B(nlD, 3 i< min{E[nlnl,Zf ), Eln 3,,3 1}-

Proof. For any set K in the interval [-4,A7, let K denote its
complement in [~£,A7. Let

(1) g ™= {d‘ : for '5"1- J» Dy requires X at the y+18% step?.

Let
. Z;.rl(x) .
Tyl 7) = Cfl(X)’(i"—C)fg(x) » and
TX(Z) = log W , where ¢ = log Iy
A“en
1+B,[n|ni,rx(b‘ )V it ge r‘i,
(2) ElniD,,¥ 1=

1+B,0n|D,,Ty(¥)] 1t gefl.

Let H(§ )= nin{Ea[nIDI, 33, thnlnz, b“}} then

B’[nIDI,ZS 1 for ye@®,
Eé[n\Dz,B‘ ] for 3E (?‘ij,

1EynlD,, T (8)] for BN NB UM, N,
LE,n[Dy, Ty ()] for sefi n @UF, n(B)
Fow let [ = [ /‘,@UP20®. Then

1+B,[n D,T ] el
(4) Bn/D, ¥ = { 5"31 () I}
l*Eé.ln n,'rx(x )3 gel

(3) H(Y) =

Then if cne sets G{ ¥ )=H( &)-Eln(D, X1,

Byla(Ty (81 Wel,

(5) G(¥) >
B, I6(T:(5))] el
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Kow it is asserted that G> O, for suppose that it asaumes ity aminimum

at ¢ . Then P .
(6) a(y,) - .
E or.e('r!( 3N Se .

Buf, for any random variable, Z, if E(Z1=min Z, then Z= mir Z with
probability 1. Therefore, G( 'Go) -G(Tx( 50)) tor 8el", Since
4o f20
Tx( 60) =0+ log f_lm ’

rz(_x)

G( ‘6‘0) = G(8 + 1og .f?ﬁ)‘

(7)

n
Similarly, if 605 r,

T,
o So" 08 g (Y g
fz(x) g,(T)

Since bo@ log aﬂ and log W are negative with positive

probability, it is seen that by a finite number of applications of the
above ressoning a point §'g -A can be reached such that G( a‘o)- G(3).
But G(8)=0 for (¥ | >A. Hence, G{& )20. In view of the definition
of G, ths proof is complete.

It i8 clear that the same analysis wonid apply to any finite number
of stationary designs.

5. V L' .

5.1. Geperal Rogults. The statistical problem which goes under this
general title 1s that of £inding a design which #ill zaximize the sum of n
independent observations in the following situation: 1let X gnd Y be real

valued random variables having e¢.d.f.'s Fi and Gi’ respectively, under

-
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hypothesis H, (1=1,2) and % be the g priori probatility that H, io the
true hypothesis. The problem is to devise a sequential design which will
maximize the expected value of the sum of n observations, each of which is
to be an observation eithar of X oxr T.

Let ti and 8y be the densities corresponding to l"i and Gi with respect
to the measure V. Let ln( C,"?*) denote the expected value of the aﬁm of
the n observations if I, is the g priori probability for F.i and the optimal
design, f , 13 used., If one observed X first =and then continued for n-1

steps following the optimal rule, then the expected sum would be

qa [0 0]
(511) 1, =& [en@areay) [ ey oap
- <o

C £y (t) .
t j 'n-l(cfl(ty(l.c)fz(t) y L ()4 (1- §) L, (8))a .
-

Sirilarly, if Y were observed first and the optimal rule followed for the

remalinirg n~1 steps, the expected sum would be

@® (o]
(5.1.2) B = r,ftgi(t)d%(l-z;) ftgz(t)d‘P
- - ®

¢ g, (t)
) ip'n-l‘ r,sl(t)«%l-c)szm 4G g (W) -Gy (e)a Y

v
-

*
Hence, W ( &,d") = max (An,Bn).
A naturai design to be considersd is that which requires that one
maximize step by step, i.e., after the jth observation the g posteriori
Probabllity, bj, is computed and at the next step observe the random

variable corresponding to the meximum of ft( ijl(t)"(l- bj)fz(t))dq’

®
and f)t( ‘ngl(t)*(l- Cj)gz(t))d ¢. Denote this stepwise maximization
‘o

design by 630.
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Thecrom £.1. If the l.ikelihood ratios fz/f1 and gz/g1 have the same

distributions under Hl and also under Hz’ thsn g£1 is ths optimal) design.
Proof. $Since,

Lf ) if X is observed first,
]-*1§;2 :gv—v
(1 ¢ =<
i 1 Y 15 observed first,
- 1"7: gz(x)
i & glzxs

\.

and the likelihood ratios have the same distributions, the distribution

of Z;l is independent of which random variable is obsarved first. Hence,
the expected value of the optimal ;isid from the lasi n-1 steps is indapen-
dent of the choice for the first step. One can, therefore, maximize the
expected sum of n observations by choosing at the first atep.the randonm
variable having the larger expected value and continuing witk the optimal
design for the remaining steps.

Since all the random variables are assumed to be independent, the same
argument shows that, given Cj’ it is optimal to follow gi for the J*lﬂt
step.

An example in which the 1ikelihood ratios sre distributed alike is:

) ¢ Y
H, K(0,1) N(}L,l)
g, u(,u,:i.) (o,1) .

If the above oxample is modified to destroy the aymmetry, e.g.,

I Y
H, X(0,1) N(A,1)
B, K1) RO (uf A, ps0, 50,
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then an is not optimal. If it were, then for n=2 and & such that
(1-%)p = @ A there would be indifference as to the first step. If I

ia observed at the first step, then the expected sum of the two observations
is

(5.1.3) (1~ EIp (- %) uPr(Ly A < (1= G el B+ LAPr( gy A > (1= %y )| By),

or
i logr—L%— *-y-'
© _ﬁ a =zp 2

(1 ) p o (1- B )p 3 e 2 atel) f 20 ? at.

b LA M L
If, on the other hand, Y is observed first, the expected sum would be

-1;\-1:55 &2 *-A-

® 2 - 2 5
- L
(5.1.4) Z;A*C%j e 2 at (g 5%- e ? at

--%-log-(—-c'b)—l_r(# -%‘ -

But since (1~ t,) }1 = TN , if ‘X'b were optiral there would be indifference
as to the first step and hence

o ¥ w2 _# ® _t M2 42
(5.1.5) /ozdt+f ezdé-jezdwf e %at
-5 -& 2h -&
which implies that M= .
5.2, 1 ' Two- t! B Casqa. A special case of

the Two-armed Bandit of widespread Interest is that in which the random
variables have binomial distributions with parameters given by:
X
Hl F

B, 9 P

—r
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A second example in which the likelihood ratios are distributed alike
iy furnished here in the case p*q=1. Hence, for thai 2ase, Jo is the
optimal design. Indeed, it 18 a conjecture of Blackwelil's that in any
case ‘go is the optimal design.

Before considering the question of "{o being optimal it will be shown
that it has the desirable property of béing consistent.

Theorem 5.2. Following the deaign ,&, the expected value of the
average of the first n observations converges to max(p,q) as n —o.

Progf. Assume that p>gq. Then,

Fo(G,d,) = B (X=1)0, 1(—(—-5,.! JB,(X=1)W,_ 1(,—,‘7;93"5,.5 B, (1=0);

(2) i£ T <1/2,
LAG AN AR =1)+W I(P—%f',—y, .4 )P (T=1)+N (PC YA )P (x=0);
where PC(Z- e)=LP(Z= c!Hl)*(l- ;)P(Z- cﬁﬂz).

Let °n( AP Jo)-% ln( Ci "Yo)' Then an(C 40) is monotone increasing

in n and is boundsd from above by p for all n. Let a(Z, .‘5 )=1lim a (¢ 94?)
n-»m

Since an(Z;,.XO) is convex snd continuous in { for <1, a( &, a!\ is
(1)

r 4
9.!12

also. PFurther, since na_(%, ,op) satisiies

a(lﬂf_—ﬂ,xjo)?c(x'l)*a(“é{-l‘y A )R, (X=0), ¢ >1/2

a(P—%,‘.—y,J )R, (= 1)+ a(,i,ljzgl_%, 4k (1=0), ¥ <1/,

(
(3) a(g, J)-%
l
\

"
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Suppose thut the minimum of af "!o) is essumed at 7> 1/2. Then
it also assumes its minimun :t pCo/Pcc(I" 1)> g By iteration, it
P %,
P % ord (1= 5,)
Co could be taken tc ke 1. If or the other hand, ¢°< 1/2, the analogous

which tends to 1 as n—mo. Hence,

assames its minimum at

procedure shows that g, could be taken to be O. Thus, the minimum of
sl Cs .a%) is assumed either at O or 1. But a(0, Jo)- a(l, Je)' p, which
establishss ths theorem.

If one lets Zn be the average of the first n observations then if
‘Xo is used, E(Zn)——>p. Purthermcre, E(ZE) < E(an) and it is seen that
the sequence {Zn} forms & lower semimartingale. From the results of

martingale theory [71 it can be concluded also that Zn—>p with probability 1.

5.3 Tho Question of Optimal Design. Conmnpsny was Joined with that
sizeable group who bave Jousted with the problem of finding ths optimal

design for the Two-armed Baadit problem as described in the preceding
naction. Efforts were directed to proving Blackweil’s conjecture that :J;
is optimal and, while not meeting with complete success, the belief remains

tbst the conjecture is correci. A brief outline of two lines of attack.
@ consludes Ss¢
Let X Jo denote that design calling for X first followed by the use
of ,.Jc for the remaining steps. Consider K (&,XJ)-¥ (% ,TJ)); it is
equal to (2¥ -1)(p-q) for m= 1. The induction hypothesis was made that
the difference was positive fox Z>1/2 for all m<n. In computing this
difference for small valuss of n it appeared that the case p (1-p)~ q°(1-q)

gave the smellest differsnce. For T near 1/2, but greater than 172, and
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"‘n( p)<q (1-q), .4 coincides with the rule, ‘K, which requires that when

a: observation is a success (1 is observed) the same random variable is to

be obeerved at the next step, but if a failure occurs (0 is observed) then
at the next step observe that random variable which has fzilcd the fewest
times or, if the number of failures are the same, observe next the cne which
has succeeded the greatest number of times; ix case of tlies, obssrve X
paxt.. It 1s easily astahlishod by induction that

(5.3.1) v (G, xR-1 (g ,1R) = (24-1)0%q") .

Efforts were directed towards showing that
v (3,047 (%,1d) > W (4,287 (g,18 ,

at least for { near 1/2 and greater than 1/2, by conaidering the adjustments
which would have to be made in play according ic if and YA to make them
coincide witk play sccerding to Xxfo and !‘Xo’ rezpectively, For adjustmonis
in Y® required at points where YA called for Y but !Jo called for Y and
for the symmeiric points in adjnsting the play starting with I, it was
possible to establisli that the adjustments were of the proper sign. For
the other types of adjustments the attempt to prove thei the signs were
such as would accomplish the proof was unsuccessful. However, it appeared
In the work that tho difficult adjustments did not arise for ng 5 and that
for n up to 8 they coulé he satisfactorily accounted for; hence; ths
conjecture holds for n<9.

L second atteck was made along the following line. For & > 1/2 but
near 1/2, let k, be thei number such that if at least k, successes proceds
the first fallure then the random variable which falled 1s observed at the

next step; let k2 be that number such that if there have beer =t laast k1+‘.:2

-
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successes before the second failure then the random variable which failed

is observed at the next step; etc. Then the sontribution to W (& ,1.80)

and to Wn( P.;-,!J' o) from those sequsnces containing no failures, one failure,
two failures, and three failures wes compuied and combined successively to
obtain the expressicn for thair contributien to ¥ (Z,X)-K (L ,Yd).
From the =srly work ii appeared that an izdzotiva pattern would persist in
these expreszsions, as sequences containing more and more failures wsre added,
which woiuld allow one to write out wn(q,x ;?o)-In(; " 4 .80) ir terms of the
ki and verify that it wss positive. Upon reaching sequences containing
three and four failures the sttempt to force the contributions into the

previoasly noted patterns has been unsuccessful.
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